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Whenever the two components of a Diels-Alder reaction are joined in a bis-homoconjuga- 

tive way (11, the cyclopropane strain of the adduct (2, z. 55 kcal/mol)l is expected to overwhelm 

the otherwise exothermic cycloaddition Q.g . , 33 kcal/moleJ2: entropy invariably favors dissocia- 

tion. As a result, such tetracyclic isomers (2) have most often appeared as transient intermediates 

, 0,C2d] 02s2e, -CH =CH- 4 and its variously substituted 

derivatives’). A few have even been characterized at appropriately low temperatures. 4b,5 
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We were therefore surprised to discover that conventional dibromocyclopropanation of z6 

provided the pentacyclic isomer 4_ rather than the Mcyclic 42. The expected 4,s absence of an 

appreciable barrier between the two - hence, the unexpected conclusion that 4_p is thermo- 

dynamically the more stable, was suggested by the behavior of the two epimeric monobromides, 

both obtained by B-Bu3SnH reduction at 25’ . 
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(*I U.S. Public Health Service Fellow, 1967 - 1970, and Trainee 1970 - 71. Taken in part from the 

Ph.D. thesis of S.A.K., Cornell University, 1972. 
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Like their precursor, these possess opportunities both for cycloadditive isomerism and 

for geometric isomerism - m or @ to the diene bridge of the tricyclics (hence, to the olefin 

bridge of the pentacyclics) . The e-monobromide (mp 61’. 49%, THY = 7.02 PPm7, d,J6g=3.8 Hz) 

proved to be exclusively tricyclic (5_T). The pmr spectrum of the chromatographically homogeneous 

&-isomer (mp 46 - 48’ , 42%) revealed a 71:29 mixture* of pentacyclic 5P fi, g = 8.5 Hz) and 

tricyclic 6_T (T H8 = 7.20 ppm’l , J9g=8.5 Hz). The uniformly anti-orientation of the cyclopropane - 

ring, an expected consequence of cyclopropanation from the less hindered side8 of the methoxy- 

vinyl bridge of 3 , was confirmed by the magnitudes of the pentacyclic_Il 9 (both < 3 Hz), by the high , 

field’ tricyclic 7 H1O 1 1 (4.41 in S_, 4.20 in %T), and by the inconsistency of syn assignments with 
, 

(*) Pmrregions (T), calcd. and obsd. normalized areas: 4.00, 2.58, 2.71i0.18; 4.20, 0.59. 

0.58+0.10; 6.38-7.14, 4.29, 4.22*0.16; 7.20, 0.29, 0.37*0.01; 8.08-8.02, 4.53, 4.34* 

0.12;8.88, 0.71, 0.77io.09. 
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Eu(fodj3 shifting slopes .* 

Such stabilization of a small ring by bromine recalls its analogous effect on the cyclo- 

octatrienef bicyclo[rl .2. Oloctadiene equilibrium 10 
. Yet the latter two hydrocarbons differ by only 

1.5 kcal/mol . We therefore find it difficult to believe that so subtle an effect could overwhelm the 

previously estimated enthalpy difference of 22 kcal/mol between 1 and T isomers. Although part of 

this discrepancy might be attributed to unanticipated strain in the tricyclic isomer, we think it also 

possible that the appropriate juxtaposition of three cyclopropane rings - one that corresponds to 

the trans-trishomobenzenes 
11 - provides an unexpected stabilizing influence. 

Thermodynamic control of the intramolecular Diels-Alder reaction clearly does not extend 

to the intramo .ecular homo-Diels -Alder. (Otherwise, the bicyclic isomer (1) should have equili- 

brated es and em epimers; m isomers should also have been observed.) It is the stereo- 

specificity of the latter reaction which maintains this degree of kinetic control. Whether observed 

in dienophile addition to cyc!oheptatrienes 12 , in cheletropic loss of CO 
13a 

, of so 
13b 

2 
and of N213c 

or in the facile ring opening of &s-trishomobenzenes 11 , the universally observed stereoselectivity 

would permit facile equilibration of z with its m isomers but not with its a&. 

The importance of the third cyclopropane ring in stabilizing 4JP and 6_ is further indicated 

by the silver perchlorate cleavage product of -6 - the originally anticipated bycycloi4.3. Zlundeca- 

2,4,8,10-tetraen-7-one (1, Y = CH=CH-CO-, mp 26’, 14% overall yield from bicycloj4.2.l]nona- 

2,4, 7-trien-9-one6; ir (CC14) 3020, 2920, 1675, 1186, 1039 and 912 cm -1 ; uv max (isooctane) and 

E 258 (ZSOO), 267 (24601, 335 (113). 347 (139) and 358 (111) nm; 7 (CC14) 3.35-3.45 (m, 7.111, 

4.75 (t, ElO.0 Hz, 0.95). 6.08 (t, J=9.0 Hz, 1.02). 6.40 (q, p8.0 Hz, 0.91). The completely 

analyzed, h(fcdJ3-shifted, and spin-decoupled pmr spectrum of its (i-Bu)2MH-derived alcohol 

(mp 116’ ) reveals it also to be bicyclic - homogeneous, and with the alcohol function syn to the 

diene bridge. Elemental analyses of all compounds agreed with expectation to within f 0.3%. 

(*l Closely similar stereochemistry is observed in the absence of a methoxyl function. We are 

most grateful to Prof. G. Schrader fcr informing us of these results prior to publication. 
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